1		$F = \frac{k}{v^2}$ or $Fv^2 = k$ oe		3	M1	(NB. Not for	M2 for
		$\frac{1}{v^2}$ of $\frac{1}{v} = v$ so				$F = \frac{1}{v^2}$	$6.5 = \frac{k}{4^2}$ oe
						Constant of	$0.3 - \frac{1}{4^2}$ oc
						proportionality must be a	
						symbol such as	
	•	$6.5 = \frac{k}{4^2}$ or $k = 6.5 \times 4^2$ or $k = 104$			M1	For substitution of correct formula	of F and v into a
			$F = \frac{104}{v^2}$		A1	Award 3 marks it	$F = \frac{k}{v^2}$ is on the
						answer line and to $k = 104$ is found	he value of
							Total 3 marks

2	$(v =) 3t^2 + 2 \times 4t - 5$			M1	2 out of 3 terms differentiated correctly
	$3T^2 + 8T - 5 = V \mathbf{OR} \ 3T^2 + 8T - 5 - V = 0$			Al	correct equation
	$3(T^{2} + \frac{8}{3}T) - 5$ $\mathbf{OR}\ 3(T^{2} + \frac{8}{3}T - \frac{5}{3})$ $(T =) \frac{-8 \pm \sqrt{8^{2} - 4 \times 3 \times (-5 - V)}}{2 \times 3}$			M1	attempt to complete the square OR use quadratic formula (condone one sign error in a , b or c and ft their quadratic with mistake in a or b) (condone + instead of \pm)
	$\left(T + \frac{4}{3}\right)^2 = \left(\frac{4}{3}\right)^2 + \frac{V+5}{3} \qquad (T=) \frac{-8 \pm \sqrt{124 + 12V}}{6}$			M1	sight of this method mark implies the previous M1 (condone + instead of \pm) (ft their quadratic with mistake in a or b)
	$T = \frac{-4}{3} \pm \frac{1}{3}\sqrt{16 + 3V + 15} \qquad (T = \frac{-8 \pm 2\sqrt{31 + 3V}}{6}$			M1	(condone + instead of \pm) (ft their quadratic with mistake in a or b)
		$\frac{-4+\sqrt{31+3V}}{3}$	6	A1	accept $k = 31$ and $m = 3$
					Total 6 marks

3	E.g.		4	M1 for one correct relevant area
	$12 \times 9 \ (=108) \ \mathbf{or} \ (9-6) \times x \ (=3x)$			
	E.g.			M1 (dep on M1) for 129 used correctly with another area
	129 – '108' (= 21) or			or
	'108' + '3x' = 129			for a correct equation (ft) with bracket(s) expanded
	E.g.			M1 for a complete method
	$21' \div (9-6)$ or			
	$x = \frac{129 - 108'}{}$			
	$x - {9-6}$			
		7		A1 Accept 7 cm
				Total 4 marks

4	(a)	$(2x+5)(x+1) = 2x^2 + 2x + 5x + 5$ $(= 2x^2 + 7x + 5) \text{ or}$ $(x+1)(3-x) = -x^2 + 3x - x + 3$ $(= -x^2 + 2x + 3) \text{ or}$ $(3-x)(2x+5) = -2x^2 + 6x - 5x + 15$ $(= -2x^2 + x + 15)$		3	M1 for multiplying out two brackets correctly at least 3 terms correct	M2 for at least 4 terms correct out of a maximum of 8 terms $6x^2 - 2x^3 + 6x - 2x^2 + 15x - 5x^2 + 15 - 5x$
		E.g. $[(2x^2 + 7x + 5)(3 - x) =]$ $-2x^3 - 7x^2 - 5x + 6x^2 + 21x + 15 \text{ or}$			M1 for at least 3 terms correct out of a maximum of 6 terms	
		$[(-x^2 + 2x + 3)(2x + 5) =]$ $-2x^3 - 5x^2 + 10x + 4x^2 + 6x + 15 \text{ or}$ $[(-2x^2 + x + 15)(x + 1) =]$ $-2x^3 - 2x^2 + 15x + x^2 + x + 15$			for at least 4 terms correct out of a maximum of 8 terms	
			Shown		A1	

5	(a)	$A = \frac{k}{r^2}$		3	M1	oe k can be any letter (must be a letter and not 1)
		$5 = \frac{k}{0.3^2}$ oe or $k = 0.45$ oe			M1	implies first M1 if you see this stage
		Working not required, so correct answer scores full marks (unless from obvious incorrect working)	$A = \frac{0.45}{r^2}$			oe with A as the subject eg $A = \frac{9}{20r^2}$ (allow $A = \frac{k}{r^2}$ where $k = 0.45$ oe) (SC if M0 scored then award B2 for $A \propto \frac{0.45}{r^2}$ oe)

6	$\frac{2n}{2} \left[2a + (2n-1)d \right] $ oe		4	M1	for a correct expression for S_{2n}
	$\frac{2n}{2} \left[2a + (2n-1)d \right] = 4 \times \frac{n}{2} \left[2a + (n-1)d \right] \text{ oe}$			M1	dep on M1 for setting up a correct equation for $S_{2n} = 4 \times S_n$
	2a - d = 4a - 2d oe			M1	for a correct linear expression in a and d
		$\frac{d}{2}$		A1	(dep on M2) for $\frac{d}{2}$ oe
					Total 4 marks

3 A1 Dep on M3	7	$(S_{10} =) \frac{10}{2} (2a+9d) \text{ or } (S_5 =) \frac{5}{2} (2a+4d) \text{ oe or } a+7d=45$ $\frac{10}{2} (2a+9d) = 4 \times \frac{5}{2} (2a+4d) \text{ oe}$ $eg d = 2a \text{ oe or } a = \frac{d}{2} \text{ oe}$ $or a+7d=45 \text{ oe and } eg 10a-5d=0 \text{ oe}$ $or \frac{10}{2} (2(45-7d)+9d) = 4 \times \frac{5}{2} (2(45-7d)+4d) \text{ oe}$ $or 5d = 10(45-7d) \text{ oe}$ $eg a+7(2a) = 45 \text{ or } d=6 \text{ or}$ $eg or 70a-35d=0 \qquad 10a-5d=0$ $5a+35d=225+ \qquad 10a+70d=450-$ $(75a=225) \qquad (-75d=-450)$		5	M1 M1 M1	for a correct expression for the sum of the first 10 terms (S_{10}) or the first 5 terms (S_5) or a correct equation for the 8^{th} term Take 9 as their $10-1$ and 4 as their $5-1$ and 7 as their $8-1$ for a correct equation relating S_{10} and S_5 (dep on M1) for d in terms of a , or viceversa (must be correct) or for $a+7d=45$ oe and correctly reducing the equation relating S_{10} and S_5 to an equation with one term in a and one term in d eg $10a-5d=0$ oe or substituting a correct expression into their correct equation to obtain an equation in just d (dep on M2) for a correct equation in just a or for $d=6$ or for a correct method to eliminate a or d : coefficients of a or d the same and correct operation to eliminate selected variable (condone 1 arithmetical error)
	-		3		Al	Total 5 marks

8	eg $\frac{4}{3}\pi r^3 \div 2(=\frac{2}{3}\pi r^3)$ oe		6	M1	for finding the volume of hemisphere
•	eg $\frac{1}{3}\pi(kr)^2kh - \frac{1}{3}\pi r^2h(=\frac{1}{3}\pi r^2h(k^3-1))$ oe			M1	for finding the volume of the frustum
,	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3$ or $\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$ oe			M1	for a correct expression for the volume of Solid A or Solid B
	eg $\frac{1}{3}\pi r^2 h(k^3 - 1) + \frac{2}{3}\pi r^3 = 6\left(\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3\right)$ oe			M1	for a correct equation using the volumes of Solid A and Solid B (π could be cancelled out)
	eg $h(k^3-1)-6h=12r-2r$ oe			M1	for simplifying to a point where the <i>h</i> terms are on one side of an equation and other terms the other side – must be correct
	NB: note that simplest form was not required	$\frac{10r}{k^3 - 7}$		A1	oe eg $\frac{4r - \frac{2}{3}r}{\frac{1}{3}k^3 - 2\frac{1}{3}}$
					Total 6 marks

9	$8t \text{ or } \pm 125t^{-2} \text{ oe}$		5	M1 for differentiating one term correctly
	$8t - 125t^{-2}$ oe or $8t - \frac{125}{t^2}$ oe			A1 for both terms correct
	$8t - 125t^{-2} = 0$ and $(t =) \sqrt[3]{\frac{125}{8}} (= 2.5)$			M1 for equating their $8t \pm at^{-2}$ oe or $bt \pm 125t^{-2}$ oe to zero and solving for t ie must have correct powers of t and at least one correct coefficient and correct isolation of t
	$4("2.5")^2 + \frac{125}{"2.5"}$			M1 dep on previous M mark for substituting into s
		75		A1
				Total 5 marks

10 (b)		3 <i>x</i>	1	B1	allow $3 \times x$ or $x \times 3$ ft their "3" in (a)
11	eg $k \times \frac{1}{\beta} \mathcal{A} r^2 h = \frac{4}{\beta} \mathcal{A} r^3$ or $k \times \frac{1}{\beta} \pi \gamma^2 h = \frac{4}{\beta} \pi r^3$ or $k \times \frac{1}{3} \pi \gamma^2 h = \frac{4}{3} \pi r^3$ or $k \times h = 4r$		6	M1	for setting up an equation with volumes and some simplification (minimum of 2 terms simplified)
	$h = \frac{4r}{k}$			M1	for finding h in terms of r and k in its simplest form (may be seen at a later stage)
•	eg $l^2 = r^2 + \left(\frac{4r}{k}\right)^2$ or $l = \sqrt{r^2 + \left(\frac{4r}{k}\right)^2}$			M1	for correct substitution into Pythagoras' theorem (accept

	K			later stage)
·	eg $l^2 = r^2 + \left(\frac{4r}{k}\right)^2$ or $l = \sqrt{r^2 + \left(\frac{4r}{k}\right)^2}$		M1	for correct substitution into Pythagoras' theorem (accept substitution of $h = \frac{4\pi r}{\pi k}$)
	eg $l = r\sqrt{1 + \frac{16}{k^2}}$ or $l = r\sqrt{\frac{k^2 + 16}{k^2}}$ or $l = r\frac{\sqrt{k^2 + 16}}{k}$		M1	for rearranging and removing the r from the square root (may be seen at a later stage)
	$= \operatorname{gr}^2\left(\sqrt{1 + \frac{16}{k^2}} + 1\right)$		M1	for a correct expression for surface area in terms of r and k with πr^2 removed as a factor
-	Correct answer scores full marks (unless from obvious incorrect working)	$\pi r^2 \left(\frac{k + \sqrt{k^2 + 16}}{k} \right)$	A1	
·		The state of the s		T-4-1 (l

12	$ \begin{array}{c} 2^{3} \text{ and} \\ 2^{4x} \text{ or } (2^{4})^{x} \end{array} $		5	M1	for writing 16 ^x and 8 as a power of 2 (or all as powers of 4,8 or 16)
	$n = x^2 + 4x + 3 \text{ oe or}$ $x^2 + 4x + 3 - n = 0$			A1	for writing <i>n</i> in terms of <i>x</i> correct expression implies first M1
	$(n=)(x+2)^2 - 2^2$ oe or $(x=)-2\pm\sqrt{n+1}$ $(x=)\frac{-4\pm\sqrt{4^2-4\times1\times(3-n)}}{2}$ oe			M1	for a correct first step in completing the square or using the quadratic formula correctly ft their 3 term quadratic
	$(x=)-2+\sqrt{n+1}$ oe or $(x=)\frac{-4+\sqrt{4^2-4\times1\times(3-n)}}{2}$ oe			A1	for correctly rearranging to make <i>x</i> the subject (must be positive square root)
	Correct answer scores full marks (unless from obvious incorrect working)	$(x =)-2 + \sqrt{n+1}$ and $n > 3$		A1	must be positive square root Accept $(x =)\sqrt{n+1} - 2$ oe and 3 < n Accept $(x =) \frac{-4 + \sqrt{4^2 - 4 \times 1 \times (3 - n)}}{2}$ oe and $n > 3$ or $3 < n$
					Total 5 marks

ALT	$4^{\frac{1}{2}n}, 4^{\frac{1}{2}x^2}, 4^{2x}$ and $4^{\frac{3}{2}}$	$8^{\frac{1}{3}n}, 8^{\frac{1}{3}x^2}$	$16^{\frac{1}{4}n}, 16^{\frac{1}{4}x^2}$		5	M1	for all as powers of 4 or 8 or 16
	and $4^{\frac{1}{2}}$	and $8^{\frac{7}{3}x}$	and $16^{\frac{3}{4}}$				
	$n = x^2 + 4x + 3 \text{ o}$ $x^2 + 4x + 3 - n =$					A1	for writing <i>n</i> in terms of <i>x</i> correct expression implies first M1
	$(n =)(x+2)^{2} - 2$ $(x =) -2 \pm \sqrt{n+1}$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 1}}{2}$	1				M1	for a correct first step in completing the square or using the quadratic formula correctly ft their 3 term quadratic
	$(x =) - 2 + \sqrt{n + 4}$ $(x =) \frac{-4 + \sqrt{4^2 - 4}}{2}$	l oe or				A1	for correctly rearranging to make <i>x</i> the subject (must be positive square root)
	Correct answer obvious incorrect	scores full marks et working)	(unless from	$(x =) -2 + \sqrt{n+1}$ and $n > 3$		A1	must be positive square root Accept $(x =)\sqrt{n+1} - 2$ oe and 3 < n Accept $(x =)\frac{-4 + \sqrt{4^2 - 4 \times 1 \times (3-n)}}{2}$ oe and $n > 3$ or $3 < n$
							Total 5 marks